HelmholtzZentrum münchen

German Research Center for Environmental Health

pyABC: scalable likelihood-free inference

Yannik Schälte^{1,2}, Elba Raimúndez-Álvarez^{1,2}, Emmanuel Klinger^{1,2,3}, Jan Hasenauer^{1,2}

¹Helmholtz Center Munich, Institute of Computational Biology and ²Technical University Munich, Department of Mathematics and ³Max Planck Institute for Brain Research Frankfurt, Department of Connectomics

Why should I care?	Software: pyABC ³
Goal estimate model parameters by analyzing the posterior distribution of	easy to get started visualizations # pass your model
parameters θ given observed data y _{obs} : likelihood	abc = pyabc.ABCSMC(model, prior) # pass your data abc now(db file_data) $12^{-12}_{10}_{10}_{10}_{10}_{10}_{10}_{10}_{10$

Problem

evaluating the likelihood infeasible, but possible to simulate data from the model

Where in Systems Biology?

- commonly the case for **complex stochastic models**, where evaluating the likelihood means integrating over all possible random paths
- Iow copy numbers of e.g. molecules or cells
- a particular application is in the emerging field of multi-scale modeling

multi-scale agent-based model of tumor growth¹

Solution: Approximate Bayesian Computation

Idea

circumvent likelihood evaluation by measuring distance between simulated

abc.new(db_file, data) docs and *# run it* examples abc.run(min_eps, max_iter) state-of-the-art algorithms adaptive population sizes • transition kernels flexible $\{(\theta_i, w_i)\}_{i=1}^{N_t}$ • adaptive distance functions⁴ $d(x,y) = \left(\sum_{i} |\boldsymbol{\omega_i^{(t)}}(x_i - y_i)|^p\right)^{1/p}$ customize • epsilon thresholds • measurement noise assessment⁵ $y \sim \pi(y|\theta) + \delta_{\varepsilon}$ run where you like make your cores count finish first Dynamic Scheduling scalable **Other frameworl** Accepted, included Accepted, discarded t_{STAT} Rejected SGE/UGE t_{DYN}

Method

with a distance metric d, a threshold ε , and summary statistics *s*:

Algorithm (ABC-Rejection)

until N acceptances: 1. sample parameters $\theta^* \sim \pi(\theta)$ 2. simulate data $y^* \sim \pi(y|\theta^*)$ 3. accept if $d(s(y^*), s(y_{obs})) \leq \varepsilon$

What you get

 $\pi_{ABC}(\theta|s_{obs}) \propto \int I(d(s, s_{obs}) \leq \varepsilon) \pi(s|\theta) \pi(\theta) ds$ $\approx \frac{1}{N} \sum_{i=1}^{N} \delta_{\theta^{(i)}}(\theta)$

Theorem

Under mild assumptions it holds that

- $\frac{1}{N} \sum_{i=1}^{N} \delta_{\theta^{(i)}}(\theta) \xrightarrow{w} \pi_{ABC}(\theta | s_{obs}) \text{ for } N \to \infty$
- $\pi_{ABC}(\theta|s_{obs}) \xrightarrow{w} \pi(\theta|s_{obs})$ for $\varepsilon \to 0$

8 0 5 1 Accepted 8 0 5 Accepted

Next steps

- weight summary statistics with correlations and model error ...
- efficiently handle measurement noise in ABC-SMC ...

- (semi-)automatically select informative summary statistics for different data types ...
- various application projects underway ...

Conclusion

- Iikelihood-free parameter estimation is challenging
- ABC enables reliable statistical inference
- broadly applicable
- pyABC offers a scalable framework

References and Contact

Make it efficient: ABC-SMC²

Problems

• smaller ε reduces approximation error, but also decreases acceptance rates also, sampling from the prior is inefficient

Solution

- combine with a Sequential-Monte-Carlo scheme
- iteratively decrease ε while sampling from an increasingly better approximation of the posterior

[1] Jagiella et al.; Parallelization and high-performance computing enables automated statistical inference of multi-scale models; Cell Systems; 2017 [2] Toni et al.; Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems; Journal Royal Statistical Society; 2008 [3] Klinger et al.; pyABC: distributed, likelihood-free inference; Bioinformatics; 2018 [4] Prangle; Adapting the ABC distance function; Bayesian Analysis; 2015 [5] Wilkinson; Approximate Bayesian computation gives exact results under the assumption of model error; Statistical applications in genetics and molecular

biology; 2013

github.com/icb-dcm/pyabc

yannik.schaelte@helmholtz-muenchen.de

ICB Institute of Computational Biology

