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Motivation Parameter estimation

Bayesian inference

likelihood

posterior

prior

evidence

I goal: infer parameters θ given data yobs, i.e. analyze the posterior
distribution

I optimization and sampling methods like MCMC commonly require
evaluating the (unnormalized) likelihood
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Motivation Complex stochastic models

Multi-scale models

cancer growth
(signaling, cell division and death, 
angiogenesis, tissue remodeling)

liver lobule
(cell division and cell death, tissue

mechanics)

glucose-insulin-glucagon 
regulation

(blood and interstitial flow, organ
uptake, signaling)

whole-cell
(transcription, translation, DNA

replication, metabolism, replication)
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Motivation Complex stochastic models

Example: Multi-scale model of tumor growth

Jagiella et al.; Parallelization and high-performance computing enables automated statistical inference of multi-scale models;
Cell Systems; 2017
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Motivation Complex stochastic models

Example: Multi-scale model of tumor growth

proliferating cells

I hybrid discrete-continuous model

I cells modeled as stochastically interacting agents, dynamics of
extracellular substances by reaction-diffusion equations

I simulate up to 106 cancer cells

I 10s - 1h for one forward simulation

I 7 - 18 parameters
Jagiella et al.; Parallelization and high-performance computing enables automated statistical inference of multi-scale models;
Cell Systems; 2017
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Motivation Complex stochastic models

Example: Multi-scale model of tumor growth

What we tried:

I multi-start local optimization
I deterministic gradient descent

I Levenberg-Marquardt
I trust-region
I interior-point

I stochastic gradient descent
I Bayesian optimization

I global optimization
I simulated annealing
I > 20 particle methods
I enhanced scatter search

worked — failed

Key problem: Objective function
cannot be evaluated, but only
stochastically approximated.
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Motivation Complex stochastic models

How to do parameter estimation for
complex stochastic models?
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Model?
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Approximate Bayesian Computation Basics

Idea: Rejection sampling

Background: Want to sample from f , but can only sample from g with
g � f .

until N acceptances:

1. sample θ∗ ∼ g(θ)

2. accept θ∗ with probability ∝ g(θ∗)
f(θ∗)

Accepted θ∗ are independent samples from f(θ).

Here: f = π(θ|yobs), g = π(θ), so that π(θ∗|yobs)
π(θ∗) ∝ π(yobs|θ∗)

I not available for us

I idea: circumvent likelihood evaluation by simulating data and
matching them to the observed data
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Approximate Bayesian Computation Basics

Likelihood-free rejection sampling

until N acceptances:

1. sample parameter θ∗ ∼ π(θ)

2. simulate data y∗ ∼ π(y|θ∗)
3. accept θ∗ if y∗ = yobs

Acceptance probability P[yobs]

I can be small, in particular 0 for continuous data

I idea: accept simulations that are “similar” to yobs
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Approximate Bayesian Computation Basics

ABC-Rejection

With distance d, and treshold ε > 0:

until N acceptances:

1. sample parameter θ∗ ∼ π(θ)

2. simulate data y∗ ∼ π(y|θ∗)
3. accept θ∗ if d(y∗, yobs) ≤ ε

I curse of dimensionality: if the data are too high-dimensional, the
probability of simulating similar data sets is small

I reduce the dimension using summary statistics
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Approximate Bayesian Computation Basics

ABC-Rejection

With distance d, threshold ε > 0, and summary statistics s:

until N acceptances:

1. sample parameter θ∗ ∼ π(θ)

2. simulate data y∗ ∼ π(y|θ∗)
3. accept θ∗ if d(s(y∗), s(yobs)) ≤ ε
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Approximate Bayesian Computation Basics

Example

y ∼ N (2(θ − 2)θ(θ + 2), 1 + θ2),
θ ∼ U [−3, 3],
d = ‖·‖1,
yobs = 2,
N = 1000 acceptances

Will the approximation always converge to the true posterior?
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Approximate Bayesian Computation Basics

Formally

We want:
π(θ|yobs) ∝ π(yobs|θ)π(θ)

We get:

πABC(θ|sobs) ∝
∫
I({d(s, sobs) ≤ ε})π(s|θ)π(θ)ds ∝≈

1

N

N∑
i=1

δθ(i)(θ)

Theorem

Under certain assumptions it holds that

I 1
N

∑N
i=1 δθ(i)(θ)

w−→ πABC(θ|sobs) for N →∞,

I πABC(θ|sobs)
w−→ π(θ|sobs) for ε→ 0.
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Approximate Bayesian Computation Basics

Sources of approximation errors in ABC

I model error (as for every model of reality)

I Monte-Carlo error (as for sampling in general)

I summary statistics

I epsilon threshold
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Approximate Bayesian Computation Basics

John Tukey 1962

“Far better an approximate answer to the right question, which is often
vague, than an exact answer to the wrong question, which can always be
made precise.”

Gelman and Rubin 1996

“[...] one of the great scientific advantages of simulation analysis of
Bayesian methods is the freedom it gives the researcher to formulate
appropriate models rather than be overly interested in analytically neat but
scientifically inappropriate models.”

from U. Picchini; Lund University; PhD course Statistical inference for partially observed stochastic processes
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Approximate Bayesian Computation Efficient sampling

Efficient samplers

I ABC-Rejection, the basic ABC algorithm, can be inefficient due to
repeatedly sampling from the prior

I smaller ε leads to lower acceptance rates

I many (likelihood-based) Monte-Carlo sampling algorithms like IS,
MCMC, Gibbs, SMC, today have ABC-fied versions

I here: focus on ABC-SMC
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Approximate Bayesian Computation Efficient sampling

ABC-SMC
Combine with a Sequential Monte-Carlo Scheme

Model

I idea: decrease ε = εt while sampling from an increasingly better
approximation of the posterior

Sisson et al. 2007, Toni et al. 2008, Beaumont et al. 2009
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Approximate Bayesian Computation Efficient sampling

ABC-SMC

for t = 1, . . . , tmax
1. until N acceptances

1. sample parameter θ∗ ∼ gt(θ)
2. simulate data y∗ ∼ π(y|θ∗)
3. accept θ∗ if d(y∗, yobs) ≤ εt

denote by θt1, . . . , θ
t
N the accepted parameters

2. compute weights wti =
π(θti)

gt(θti)

Here, the proposal distribution is

gt(θ) =

{
π(θ) , t = 1∑N

i=1w
t−1
i Kt(θ|θt−1i )/

∑N
i=1w

t−1
i , otherwise

.

Then, πABC(θ|sobs) ∼ {θtmax
i , wtmax

i }1≤i≤N (importance sampling).
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Approximate Bayesian Computation Efficient sampling

ABC-SMC
Example

y ∼ U [−0.05, 0.05], θ ∼ U [−4, 4], d = ‖·‖2, yobs = 0, same ε threshold

Overall number of samplesABC-SMC epsilon reduction scheme

1 iteration 8 iterations

The SMC scheme significantly reduces the needed number of samples.
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Approximate Bayesian Computation Challenges

Challenges in ABC-SMC

I summary statistics

I distance functions

I epsilon thresholds

I population sizes
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Approximate Bayesian Computation Challenges

Summary statistics

y 7→ s(y)

I low-dimensional representation of data to extract relevant
features and increase acceptance rates

I ideally: minimal sufficient statistics, i.e. s is minimal s.t.
π(θ|y) = π(θ|s(y)) for almost every y

I practically: usually not available (essentially only for exponential
family models), therefore trade-off between information loss and
performance

I (semi-)automatic selection of summary statistics (Fearnhead and
Prangle 2012, and the review Blum et al. 2013)
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Approximate Bayesian Computation Challenges

Summary statistics
Example

y ∼
⊗R

i=1N (θ, 1) for R = 10000, θ ∼ U [−4, 4], d = ‖·‖2,
yobs = [0, . . . , 0]

s = y

time: 107s, samples: 5.2e3

s = ȳ = 1
R

∑R
i=1 yi

time: 32s, samples: 1.8e3
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Approximate Bayesian Computation Challenges

Summary statistics
Example 2: gk distribution

I gk distribution gk(y|θ) with θ = (A,B, g, k) given via quantile
transform

Q(q|A,B, g, k) = A+B

[
1 + c

1− exp(−gz(q))
1 + exp(−gz(q))

]
(1 + z(q)2)kz(q)

for B > 0, k > −1
2 , c = 0.8, where z(q) = Φ−1(q) is the quantile

transform of N (0, 1)

I density function has no closed form

Yannik Schälte ABC CRM SNS Pisa, 2018-10-03 30 / 57



Approximate Bayesian Computation Challenges

Summary statistics
Example 2: gk distribution

y ∼
⊗R

i=1 gk(y|θ) for R = 1000, θ ∼ U [0, 5], d = ‖‖2, yobs sampled from
the likelihood with θ = (3.0, 1.0, 2.0, 0.5)

summary statistics:

1. s = y

2. s = (sA, sB, sg, sk) where sA = E4, sB = E6 − E2,
sg = (E6 + E2 − 2E4)/sB, sk = (E7 − E5 + E3 − E1)/sB where
E1 ≤ . . . ≤ E8 are the octiles of y (Drovandi and Pettitt 2011)
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Approximate Bayesian Computation Challenges

Summary statistics
Example 2: gk distribution

based on full data based on order statistics

Only the use of proper summary statistics ensures convergence in a
reasonable computation time.
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Approximate Bayesian Computation Challenges

Challenges in ABC-SMC

I summary statistics

I distance functions

I epsilon thresholds

I population sizes
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Approximate Bayesian Computation Challenges

Distance functions

d(s(y∗), s(yobs))

I in practice often simply p-norm distance (e.g. Euclidean distance

p = 2) used, i.e d(x, y) = (
∑ns

i=1 |xi − yi|p)
1/p where ns is the

summary statistics dimension

I many other distances possible (McKinley 2009)

Yannik Schälte ABC CRM SNS Pisa, 2018-10-03 34 / 57



Approximate Bayesian Computation Challenges

Distance functions
Weighted distances

I problem: summary statistics can vary on different scales

s1

s
2

I therefore: weighted distance d(x, y) = (
∑ns

i=1 ωi|xi − yi|p)
1/p

I usually: pre-calibrate weights

I requires additional effort, and in iterative methods the proposal
distributions can vary over time

I Prangle 2015: adapt weights iteratively based on samples from
previous iteration

I note: assumes equally informative summary statistics
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∑ns

i=1 ωi|xi − yi|p)
1/p

I usually: pre-calibrate weights

I requires additional effort, and in iterative methods the proposal
distributions can vary over time

I Prangle 2015: adapt weights iteratively based on samples from
previous iteration

I note: assumes equally informative summary statistics
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Approximate Bayesian Computation Challenges

Distance functions
Adaptive weights: Example

s1 ∼ N (1 + θ, 0.01), s2 ∼ N (2, 100), sobs = [4, 2] corresponding to
θtrue = 3, θ ∼ U [0, 10]

d = ‖·‖2 d = adaptively weighted ‖·‖2

Accounting for data heterogeneity improves convergence.
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Approximate Bayesian Computation Challenges

Challenges in ABC-SMC

I summary statistics

I distance functions

I epsilon thresholds

I population sizes
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Approximate Bayesian Computation Challenges

Epsilon thresholds
How to choose epsilon?

pre-specified list

quantiles

predict threshold-acceptance rate
Silk, Filippi, Stumpf 2013
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Approximate Bayesian Computation Challenges

Epsilon thresholds
Generalization and re-interpretation

I generalize I({d(s(y), s(yobs)) ≤ ε}) Kε(s(y)− s(yobs)) for some
kernel Kε, i.e.

3.’ accept with probability Kε(s(y)−s(yobs))
Kε(0)

(can represent the previous 0, 1-cutoff by a U [−ε, ε]) kernel)

I Wilkinson 2013: ABC gives exact inference under the assumption of
measurement noise: it samples from the model s ∼ π(s|θ) + δ where
δ ∼ Kε is an independent error term
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Approximate Bayesian Computation Challenges

Epsilon thresholds
Assessing measurement noise

I if there is measurement noise, it must be accounted for in ABC
I ignoring leads to wrong parameter estimates
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Approximate Bayesian Computation Challenges

Epsilon thresholds
Assessing measurement noise

I if there is measurement noise, it must be accounted for in ABC
I ignoring leads to wrong parameter estimates

θ ∼ U [0, 5], yobs sampled from N (2.5, 0.52)

y = θ y ∼ N (θ, 0.52)
Yannik Schälte ABC CRM SNS Pisa, 2018-10-03 40 / 57



Approximate Bayesian Computation Challenges

Epsilon thresholds
Assessing measurement noise

I if there is measurement noise, it must be accounted for in ABC
I ignoring leads to wrong parameter estimates

I idea: we can use Wilkinson’s insight to encode actual measurement
noise not in the simulation, but in the acceptance step, and perform
exact Bayesian inference
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Approximate Bayesian Computation Challenges

Challenges in ABC-SMC

I summary statistics

I distance functions

I epsilon thresholds

I population sizes
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Approximate Bayesian Computation Challenges

Population sizes

How to choose the population sizes Nt in ABC-SMC?

I trade-off accuracy – computational effort

I idea: adapt population sizes trying to match a specified target
accuracy

I expressed in terms of the variation associated with kernel density
estimates

Klinger et al.; A Scheme for Adaptive Selection of Population Sizes in ABC-SMC; CMSB; 2017
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Approximate Bayesian Computation Challenges

Population sizes

How to choose the population sizes Nt in ABC-SMC?

I trade-off accuracy – computational effort

I idea: adapt population sizes trying to match a specified target
accuracy

I expressed in terms of the variation associated with kernel density
estimates

0.2

0.1

0.05

Population

size

Klinger et al.; A Scheme for Adaptive Selection of Population Sizes in ABC-SMC; CMSB; 2017
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Approximate Bayesian Computation Challenges

Further notes

I there is a lot more to discuss

I including adequate proposal distributions, automatic summary
statistics selection, threshold schedules, ABC-MCMC, regression
ABC, approximate ABC, and many variations of the presented
algorithms, ...

I also model selection possible in ABC by augmenting the parameter
space
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Applications

Table of Contents

1 Motivation
Parameter estimation
Complex stochastic models

2 Approximate Bayesian Computation
Basics
Efficient sampling
Challenges

3 Applications

4 Conclusion

Yannik Schälte ABC CRM SNS Pisa, 2018-10-03 44 / 57



Applications

pyABC
https://github.com/icb-dcm/pyabc

I implements an ABC-SMC algorithm

I HPC scalable using dynamic scheduling

I analysis, visualization and easy customization

I adaptive local/global transition kernels, distances,
acceptance threshold schedules, population sizes, early
rejection, ...

user-friendly

scalable

flexible

Klinger, Rickert, Hasenauer; pyABC: distributed, likelihood-free inference; Bioinformatics; 2018
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Applications

pyABC
Three lines get you started

# pass model data

abc = pyabc.ABCSMC(model , prior , distance)

# pass observations

abc.new("sqlite :/// database.db", observations)

# run it

abc.run(minimum_epsilon =1e-2, max_nr_populations =30)

Klinger, Rickert, Hasenauer; pyABC: distributed, likelihood-free inference; Bioinformatics; 2018
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Applications

Multi-scale model of tumor growth
Summary statistics

Jagiella et al.; Parallelization and high-performance computing enables automated statistical inference of multi-scale models;
Cell Systems; 2017
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Applications

Multi-scale model of tumor growth

I 400 cores

I 3 days

I 1.8e6 simulations
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Applications

Multi-scale model of tumor growth

ABC worked where many other methods had failed.

Yannik Schälte ABC CRM SNS Pisa, 2018-10-03 49 / 57



Applications

Multi-scale model of tumor growth

ABC worked where many other methods had failed.

Yannik Schälte ABC CRM SNS Pisa, 2018-10-03 49 / 57



Applications

Multi-scale model of tumor growth

ABC enables automatic multi-experiment data integration.

Jagiella et al.; Parallelization and high-performance computing enables automated statistical inference of multi-scale models;
Cell Systems; 2017
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Applications

Multi-scale model of tumor growth

ABC enables uncertainty-aware predictions.

Jagiella et al.; Parallelization and high-performance computing enables automated statistical inference of multi-scale models;
Cell Systems; 2017
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Applications

Multi-scale model of tumor growth

ABC enables hypothesis testing.
Jagiella et al.; Parallelization and high-performance computing enables automated statistical inference of multi-scale models;
Cell Systems; 2017
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Applications

Multi-scale model of tumor growth

What data do I need?

ABC enables experimental design.

Jagiella et al.; Parallelization and high-performance computing enables automated statistical inference of multi-scale models;
Cell Systems; 2017
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Applications

Analysis of HIV infection dynamics

Jana Fehr, Emmanuel Klinger, Frederik Graw, Jan Hasenauer
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Applications

Comparing HCV transmission modes

with Elba Raimúndez-Álvarez, Peter Kumberger
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Conclusion

Conclusion

I parameter estimation when we cannot evaluate the
likelihood is challenging

I ABC enables reliable statistical inference with
uncertainty information

I samples from an approximation of the true
posterior

I broadly applicable

I scalable

I increasingly popular in many research areas

I not a silver bullet – if possible, use (sufficiently
good approximations of) likelihoods
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Conclusion

Conclusion

I parameter estimation when we cannot evaluate the
likelihood is challenging

I ABC enables reliable statistical inference with
uncertainty information

I samples from an approximation of the true
posterior

I broadly applicable

I scalable

I increasingly popular in many research areas

I not a silver bullet – if possible, use (sufficiently
good approximations of) likelihoods

Not everything is a nail.

Yannik Schälte ABC CRM SNS Pisa, 2018-10-03 56 / 57



Conclusion
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Further reading

Sisson, Scott A. and Fan, Yanan and Beaumont, Mark
Handbook of Approximate Bayesian Computation.
CRC Press, 2018.

Beaumont, Mark A.
Approximate Bayesian Computation in Evolution and Ecology.
Annual Review of Ecology, Evolution, and Systematics,
41(1):379–406, 2010.

Blum M. G.
Choosing the Summary Statistics and the Acceptance Rate in
Approximate Bayesian Computation.
Proceedings of COMPSTAT, Physica, 2010.
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ABC-MCMC
Combine with a Markov-Chain Monte-Carlo Scheme

initialize some θ0 and simulate y0 ∼ π(y|θ0)
until enough acceptances

1. sample θ∗ ∼ g(θ|θn−1)
2. simulate y∗ ∼ π(y|θ∗)

3. calculate α = min
[
1, π(θ∗)g(θ∗|θn−1)I({d(s(y∗),s(yobs))≤ε})

π(θn−1)g(θn−1|θ∗)I({d(s(yn−1),s(yobs))≤ε})

]
4. accept with probability α and update θn = θ∗, yn = y∗

Yannik Schälte ABC CRM SNS Pisa, 2018-10-03 2 / 5



Example: Gene expression
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Example: Gene expression

only protein counts mRNA and protein counts
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Model construction using Morpheus
https://morpheus.gitlab.io

Staruss et al.; Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology; Bioinformatics;
2014
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