Approximate Bayesian Computation for Parameter Estimation of Complex Stochastic Models

Yannik Schälte ${ }^{1,2}$ Jan Hasenauer ${ }^{1,2}$
${ }^{1}$ Helmholtz Center Munich, Institute of Computational Biology
${ }^{2}$ Technical University Munich, Department of Mathematics

CRM SNS Pisa, 2018-10-03

Table of Contents

1 Motivation

- Parameter estimation
- Complex stochastic models

2 Approximate Bayesian Computation

- Basics
- Efficient sampling
- Challenges

3 Applications
4 Conclusion

Table of Contents

1 Motivation

- Parameter estimation
- Complex stochastic models

2 Approximate Bayesian Computation

- Basics
- Efficient sampling

■ Challenges

3 Applications

4 Conclusion

Parameter estimation

biological system

Parameter estimation

measurement data $y_{o b s}$

biological system
\rightarrow

Parameter estimation

measurement data $y_{o b s}$

biological system
mathematical model

Parameter estimation

Bayesian inference

- goal: infer parameters θ given data $y_{o b s}$, i.e. analyze the posterior distribution

Bayesian inference

- goal: infer parameters θ given data $y_{o b s}$, i.e. analyze the posterior distribution
- optimization and sampling methods like MCMC commonly require evaluating the (unnormalized) likelihood

Likelihood-free Bayesian inference

- can happen: numerical evaluation of likelihood infeasible

Likelihood-free Bayesian inference

- can happen: numerical evaluation of likelihood infeasible
- but possible to simulate data $y \sim \pi(y \mid \theta)$

Likelihood-free Bayesian inference

- can happen: numerical evaluation of likelihood infeasible
- but possible to simulate data $y \sim \pi(y \mid \theta)$
- often the case for complex stochastic models

Multi-scale models

Hasenauer; Data-driven modeling of biological multi-scale processes; J. Coup. Sys. and Mult. Dyn.; 2015

Example: Multi-scale model of tumor growth

Jagiella et al.; Parallelization and high-performance computing enables automated statistical inference of multi-scale models; Cell Systems; 2017

Example: Multi-scale model of tumor growth

proliferating cells

- hybrid discrete-continuous model
- cells modeled as stochastically interacting agents, dynamics of extracellular substances by reaction-diffusion equations
- simulate up to 10^{6} cancer cells
- 10s - 1 h for one forward simulation
- 7-18 parameters

Jagiella et al.; Parallelization and high-performance computing enables automated statistical inference of multi-scale models; Cell Systems; 2017

Example: Multi-scale model of tumor growth

What we tried:

- multi-start local optimization
- deterministic gradient descent
- Levenberg-Marquardt
- trust-region
- interior-point
- stochastic gradient descent
- Bayesian optimization
- global optimization
- simulated annealing
- > 20 particle methods
- enhanced scatter search

Example: Multi-scale model of tumor growth

What we tried:

- multi-start local optimization
- deterministic gradient descent worked - failed
- Levenberg-Marquardt
- trust-region
- interior-point
- stochastic gradient descent
- Bayesian optimization
- global optimization
- simulated annealing
- > 20 particle methods
- enhanced scatter search

Example: Multi-scale model of tumor growth

What we tried:

- multi-start local optimization
- deterministic gradient descent
worked — failed
- Levenberg-Marquardt
- trust-region
- interior-point
- stochastic gradient descent
- Bayesian optimization
- global optimization
- simulated annealing
- > 20 particle methods
- enhanced scatter search

Key problem: Objective function cannot be evaluated, but only stochastically approximated.

How to do parameter estimation for complex stochastic models?

Table of Contents

1 Motivation

■ Parameter estimation

- Complex stochastic models

2 Approximate Bayesian Computation

- Basics
- Efficient sampling

■ Challenges

3 Applications
4 Conclusion

ABC-Rejection

Idea: Rejection sampling

Background: Want to sample from f, but can only sample from g with $g \gg f$.
until N acceptances:

1. sample $\theta^{*} \sim g(\theta)$
2. accept θ^{*} with probability $\propto \frac{g\left(\theta^{*}\right)}{f\left(\theta^{*}\right)}$

Accepted θ^{*} are independent samples from $f(\theta)$.

Idea: Rejection sampling

Background: Want to sample from f, but can only sample from g with $g \gg f$.
until N acceptances:

1. sample $\theta^{*} \sim g(\theta)$
2. accept θ^{*} with probability $\propto \frac{g\left(\theta^{*}\right)}{f\left(\theta^{*}\right)}$

Accepted θ^{*} are independent samples from $f(\theta)$.
Here: $f=\pi\left(\theta \mid y_{o b s}\right), g=\pi(\theta)$, so that $\frac{\pi\left(\theta^{*} \mid y_{o b s}\right)}{\pi\left(\theta^{*}\right)} \propto \pi\left(y_{o b s} \mid \theta^{*}\right)$

Idea: Rejection sampling

Background: Want to sample from f, but can only sample from g with $g \gg f$.
until N acceptances:

1. sample $\theta^{*} \sim g(\theta)$
2. accept θ^{*} with probability $\propto \frac{g\left(\theta^{*}\right)}{f\left(\theta^{*}\right)}$

Accepted θ^{*} are independent samples from $f(\theta)$.
Here: $f=\pi\left(\theta \mid y_{o b s}\right), g=\pi(\theta)$, so that $\frac{\pi\left(\theta^{*} \mid y_{o b s}\right)}{\pi\left(\theta^{*}\right)} \propto \pi\left(y_{o b s} \mid \theta^{*}\right)$

- not available for us
- idea: circumvent likelihood evaluation by simulating data and matching them to the observed data

Likelihood-free rejection sampling

until N acceptances:

1. sample parameter $\theta^{*} \sim \pi(\theta)$
2. simulate data $y^{*} \sim \pi\left(y \mid \theta^{*}\right)$
3. accept θ^{*} if $y^{*}=y_{\text {obs }}$

Likelihood-free rejection sampling

until N acceptances:

1. sample parameter $\theta^{*} \sim \pi(\theta)$
2. simulate data $y^{*} \sim \pi\left(y \mid \theta^{*}\right)$
3. accept θ^{*} if $y^{*}=y_{\text {obs }}$

Acceptance probability $\mathbb{P}\left[y_{o b s}\right]$

- can be small, in particular 0 for continuous data
- idea: accept simulations that are "similar" to $y_{o b s}$

ABC-Rejection

With distance d, and treshold $\varepsilon>0$:
until N acceptances:

1. sample parameter $\theta^{*} \sim \pi(\theta)$
2. simulate data $y^{*} \sim \pi\left(y \mid \theta^{*}\right)$
3. accept θ^{*} if $d\left(y^{*}, y_{\text {obs }}\right) \leq \varepsilon$

ABC-Rejection

With distance d, and treshold $\varepsilon>0$:
until N acceptances:

1. sample parameter $\theta^{*} \sim \pi(\theta)$
2. simulate data $y^{*} \sim \pi\left(y \mid \theta^{*}\right)$
3. accept θ^{*} if $d\left(y^{*}, y_{\text {obs }}\right) \leq \varepsilon$

- curse of dimensionality: if the data are too high-dimensional, the probability of simulating similar data sets is small
- reduce the dimension using summary statistics

ABC-Rejection

With distance d, threshold $\varepsilon>0$, and summary statistics s :
until N acceptances:

1. sample parameter $\theta^{*} \sim \pi(\theta)$
2. simulate data $y^{*} \sim \pi\left(y \mid \theta^{*}\right)$
3. accept θ^{*} if $d\left(s\left(y^{*}\right), s\left(y_{o b s}\right)\right) \leq \varepsilon$

Example

$$
\begin{aligned}
& y \sim \mathcal{N}\left(2(\theta-2) \theta(\theta+2), 1+\theta^{2}\right), \\
& \theta \sim U[-3,3] \\
& d=\|\cdot\|_{1}, \\
& y_{o b s}=2, \\
& N=1000 \text { acceptances }
\end{aligned}
$$

Example

$$
\begin{aligned}
& y \sim \mathcal{N}\left(2(\theta-2) \theta(\theta+2), 1+\theta^{2}\right), \\
& \theta \sim U[-3,3] \\
& d=\|\cdot\|_{1}, \\
& y_{o b s}=2, \\
& N=1000 \text { acceptances }
\end{aligned}
$$

Example

$$
\begin{aligned}
& y \sim \mathcal{N}\left(2(\theta-2) \theta(\theta+2), 1+\theta^{2}\right), \\
& \theta \sim U[-3,3] \\
& d=\|\cdot\|_{1}, \\
& y_{o b s}=2, \\
& N=1000 \text { acceptances }
\end{aligned}
$$

Example

$$
\begin{aligned}
& y \sim \mathcal{N}\left(2(\theta-2) \theta(\theta+2), 1+\theta^{2}\right), \\
& \theta \sim U[-3,3] \\
& d=\|\cdot\|_{1}, \\
& y_{o b s}=2, \\
& N=1000 \text { acceptances }
\end{aligned}
$$

Example

$$
\begin{aligned}
& y \sim \mathcal{N}\left(2(\theta-2) \theta(\theta+2), 1+\theta^{2}\right), \\
& \theta \sim U[-3,3] \\
& d=\|\cdot\|_{1}, \\
& y_{o b s}=2, \\
& N=1000 \text { acceptances }
\end{aligned}
$$

Will the approximation always converge to the true posterior?

Formally

We want:

$$
\pi\left(\theta \mid y_{o b s}\right) \propto \pi\left(y_{o b s} \mid \theta\right) \pi(\theta)
$$

We get:

$$
\pi_{A B C}\left(\theta \mid s_{o b s}\right) \propto \int I\left(\left\{d\left(s, s_{o b s}\right) \leq \varepsilon\right\}\right) \pi(s \mid \theta) \pi(\theta) d s \underset{\approx}{\approx} \frac{1}{N} \sum_{i=1}^{N} \delta_{\theta^{(i)}}(\theta)
$$

Theorem

Under certain assumptions it holds that

- $\frac{1}{N} \sum_{i=1}^{N} \delta_{\theta^{(i)}}(\theta) \xrightarrow{w} \pi_{A B C}\left(\theta \mid s_{o b s}\right)$ for $N \rightarrow \infty$,
- $\pi_{A B C}\left(\theta \mid s_{o b s}\right) \xrightarrow{w} \pi\left(\theta \mid s_{o b s}\right)$ for $\varepsilon \rightarrow 0$.

Sources of approximation errors in ABC

- model error (as for every model of reality)
- Monte-Carlo error (as for sampling in general)
- summary statistics
- epsilon threshold

```
John Tukey }196
"Far better an approximate answer to the right question, which is often
vague, than an exact answer to the wrong question, which can always be made precise."
```


Gelman and Rubin 1996

"[...] one of the great scientific advantages of simulation analysis of Bayesian methods is the freedom it gives the researcher to formulate appropriate models rather than be overly interested in analytically neat but scientifically inappropriate models."

Efficient samplers

- ABC-Rejection, the basic ABC algorithm, can be inefficient due to repeatedly sampling from the prior

Efficient samplers

- ABC-Rejection, the basic $A B C$ algorithm, can be inefficient due to repeatedly sampling from the prior
- smaller ε leads to lower acceptance rates

Efficient samplers

- ABC-Rejection, the basic $A B C$ algorithm, can be inefficient due to repeatedly sampling from the prior
- smaller ε leads to lower acceptance rates
- many (likelihood-based) Monte-Carlo sampling algorithms like IS, MCMC, Gibbs, SMC, today have ABC-fied versions

Efficient samplers

- ABC-Rejection, the basic $A B C$ algorithm, can be inefficient due to repeatedly sampling from the prior
- smaller ε leads to lower acceptance rates
- many (likelihood-based) Monte-Carlo sampling algorithms like IS, MCMC, Gibbs, SMC, today have ABC-fied versions
- here: focus on ABC-SMC

ABC-SMC

Combine with a Sequential Monte-Carlo Scheme

- idea: decrease $\varepsilon=\varepsilon_{t}$ while sampling from an increasingly better approximation of the posterior

ABC-SMC

Combine with a Sequential Monte-Carlo Scheme

- idea: decrease $\varepsilon=\varepsilon_{t}$ while sampling from an increasingly better approximation of the posterior

ABC-SMC

Combine with a Sequential Monte-Carlo Scheme

- idea: decrease $\varepsilon=\varepsilon_{t}$ while sampling from an increasingly better approximation of the posterior

ABC-SMC

for $t=1, \ldots, t_{\max }$

1. until N acceptances
2. sample parameter $\theta^{*} \sim g_{t}(\theta)$
3. simulate data $y^{*} \sim \pi\left(y \mid \theta^{*}\right)$
4. accept θ^{*} if $d\left(y^{*}, y_{o b s}\right) \leq \varepsilon_{t}$
denote by $\theta_{1}^{t}, \ldots, \theta_{N}^{t}$ the accepted parameters
5. compute weights $w_{i}^{t}=\frac{\pi\left(\theta_{i}^{t}\right)}{g_{t}\left(\theta_{i}^{t}\right)}$

Here, the proposal distribution is

$$
g_{t}(\theta)=\left\{\begin{array}{ll}
\pi(\theta) & , t=1 \\
\sum_{i=1}^{N} w_{i}^{t-1} K_{t}\left(\theta \mid \theta_{i}^{t-1}\right) / \sum_{i=1}^{N} w_{i}^{t-1} & , \text { otherwise }
\end{array} .\right.
$$

Then, $\pi_{A B C}\left(\theta \mid s_{o b s}\right) \sim\left\{\theta_{i}^{t_{\text {max }}}, w_{i}^{t_{\text {max }}}\right\}_{1 \leq i \leq N}$ (importance sampling).

ABC-SMC

Example

$$
y \sim U[-0.05,0.05], \theta \sim U[-4,4], d=\|\cdot\|_{2}, y_{\text {obs }}=0, \text { same } \varepsilon \text { threshold }
$$

ABC-SMC epsilon reduction scheme

Overall number of samples

The SMC scheme significantly reduces the needed number of samples.

Challenges in ABC-SMC

- summary statistics
- distance functions
- epsilon thresholds
- population sizes

Challenges in ABC-SMC

- summary statistics
- distance functions
- epsilon thresholds
- population sizes

Summary statistics

$$
y \mapsto s(y)
$$

- low-dimensional representation of data to extract relevant features and increase acceptance rates

Summary statistics

$$
y \mapsto s(y)
$$

- low-dimensional representation of data to extract relevant features and increase acceptance rates
- ideally: minimal sufficient statistics, i.e. s is minimal s.t. $\pi(\theta \mid y)=\pi(\theta \mid s(y))$ for almost every y

Summary statistics

$$
y \mapsto s(y)
$$

- low-dimensional representation of data to extract relevant features and increase acceptance rates
- ideally: minimal sufficient statistics, i.e. s is minimal s.t. $\pi(\theta \mid y)=\pi(\theta \mid s(y))$ for almost every y
- practically: usually not available (essentially only for exponential family models), therefore trade-off between information loss and performance

Summary statistics

$$
y \mapsto s(y)
$$

- low-dimensional representation of data to extract relevant features and increase acceptance rates
- ideally: minimal sufficient statistics, i.e. s is minimal s.t. $\pi(\theta \mid y)=\pi(\theta \mid s(y))$ for almost every y
- practically: usually not available (essentially only for exponential family models), therefore trade-off between information loss and performance
- (semi-)automatic selection of summary statistics (Fearnhead and Prangle 2012, and the review Blum et al. 2013)

Summary statistics

Example

$y \sim \bigotimes_{i=1}^{R} \mathcal{N}(\theta, 1)$ for $R=10000, \theta \sim U[-4,4], d=\|\cdot\|_{2}$,
$y_{\text {obs }}=[0, \ldots, 0]$

$s=y$
time: 107s, samples: 5.2 e 3

$s=\bar{y}=\frac{1}{R} \sum_{i=1}^{R} y_{i}$
time: 32 s , samples: 1.8 e 3

Summary statistics

Example 2: gk distribution

- gk distribution $\mathrm{gk}(y \mid \theta)$ with $\theta=(A, B, g, k)$ given via quantile transform

$$
Q(q \mid A, B, g, k)=A+B\left[1+c \frac{1-\exp (-g z(q))}{1+\exp (-g z(q))}\right]\left(1+z(q)^{2}\right)^{k} z(q)
$$

for $B>0, k>-\frac{1}{2}, c=0.8$, where $z(q)=\Phi^{-1}(q)$ is the quantile transform of $\mathcal{N}(0,1)$

- density function has no closed form

Summary statistics

Example 2: gk distribution
$y \sim \bigotimes_{i=1}^{R} \operatorname{gk}(y \mid \theta)$ for $R=1000, \theta \sim U[0,5], d=\| \|_{2}, y_{o b s}$ sampled from the likelihood with $\theta=(3.0,1.0,2.0,0.5)$
summary statistics:

1. $s=y$
2. $s=\left(s_{A}, s_{B}, s_{g}, s_{k}\right)$ where $s_{A}=E_{4}, s_{B}=E_{6}-E_{2}$,
$s_{g}=\left(E_{6}+E_{2}-2 E_{4}\right) / s_{B}, s_{k}=\left(E_{7}-E_{5}+E_{3}-E_{1}\right) / s_{B}$ where $E_{1} \leq \ldots \leq E_{8}$ are the octiles of y (Drovandi and Pettitt 2011)

Summary statistics

Example 2: gk distribution

based on full data

based on order statistics

Summary statistics

Example 2: gk distribution

based on full data

based on order statistics

Only the use of proper summary statistics ensures convergence in a reasonable computation time.

Challenges in ABC-SMC

- summary statistics
- distance functions
- epsilon thresholds
- population sizes

Distance functions

$$
d\left(s\left(y^{*}\right), s\left(y_{o b s}\right)\right)
$$

- in practice often simply p-norm distance (e.g. Euclidean distance $p=2)$ used, i.e $d(x, y)=\left(\sum_{i=1}^{n_{s}}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}$ where n_{s} is the summary statistics dimension
- many other distances possible (McKinley 2009)

Distance functions

Weighted distances

- problem: summary statistics can vary on different scales

s1

Distance functions

Weighted distances

- problem: summary statistics can vary on different scales

- therefore: weighted distance $d(x, y)=\left(\sum_{i=1}^{n_{s}} \omega_{i}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}$
- usually: pre-calibrate weights

Distance functions

Weighted distances

- problem: summary statistics can vary on different scales

- therefore: weighted distance $d(x, y)=\left(\sum_{i=1}^{n_{s}} \omega_{i}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}$
- usually: pre-calibrate weights
- requires additional effort, and in iterative methods the proposal distributions can vary over time

Distance functions

Weighted distances

- problem: summary statistics can vary on different scales

- therefore: weighted distance $d(x, y)=\left(\sum_{i=1}^{n_{s}} \omega_{i}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}$
- usually: pre-calibrate weights
- requires additional effort, and in iterative methods the proposal distributions can vary over time
- Prangle 2015: adapt weights iteratively based on samples from previous iteration
- note: assumes equally informative summary statistics

Distance functions

Adaptive weights: Example

Accounting for data heterogeneity improves convergence.

Challenges in ABC-SMC

- summary statistics
- distance functions
- epsilon thresholds
- population sizes

Epsilon thresholds

How to choose epsilon?

pre-specified list

quantiles

predict threshold-acceptance rate Silk, Filippi, Stumpf 2013

Epsilon thresholds

Generalization and re-interpretation
\rightarrow generalize $I\left(\left\{d\left(s(y), s\left(y_{o b s}\right)\right) \leq \varepsilon\right\}\right) \rightsquigarrow K_{\varepsilon}\left(s(y)-s\left(y_{o b s}\right)\right)$ for some kernel K_{ε}, i.e.
3.' accept with probability $\frac{K_{\varepsilon}\left(s(y)-s\left(y_{o b s}\right)\right)}{K_{\varepsilon}(0)}$
(can represent the previous 0,1 -cutoff by a $U[-\varepsilon, \varepsilon]$) kernel)

Epsilon thresholds

Generalization and re-interpretation

\rightarrow generalize $I\left(\left\{d\left(s(y), s\left(y_{o b s}\right)\right) \leq \varepsilon\right\}\right) \rightsquigarrow K_{\varepsilon}\left(s(y)-s\left(y_{o b s}\right)\right)$ for some kernel K_{ε}, i.e.
3.' accept with probability $\frac{K_{\varepsilon}\left(s(y)-s\left(y_{o b s}\right)\right)}{K_{\varepsilon}(0)}$
(can represent the previous 0,1 -cutoff by a $U[-\varepsilon, \varepsilon]$) kernel)

- Wilkinson 2013: ABC gives exact inference under the assumption of measurement noise: it samples from the model $s \sim \pi(s \mid \theta)+\delta$ where $\delta \sim K_{\varepsilon}$ is an independent error term

Epsilon thresholds

Assessing measurement noise

- if there is measurement noise, it must be accounted for in ABC
- ignoring leads to wrong parameter estimates

Epsilon thresholds

Assessing measurement noise

- if there is measurement noise, it must be accounted for in $A B C$
- ignoring leads to wrong parameter estimates
$\theta \sim U[0,5]$, $y_{o b s}$ sampled from $\mathcal{N}\left(2.5,0.5^{2}\right)$

$y=\theta$

$y \sim \mathcal{N}\left(\theta, 0.5^{2}\right)$

Epsilon thresholds

Assessing measurement noise

- if there is measurement noise, it must be accounted for in ABC
- ignoring leads to wrong parameter estimates
- idea: we can use Wilkinson's insight to encode actual measurement noise not in the simulation, but in the acceptance step, and perform exact Bayesian inference

Challenges in ABC-SMC

- summary statistics
- distance functions
- epsilon thresholds
- population sizes

Population sizes

How to choose the population sizes N_{t} in ABC-SMC?

Population sizes

How to choose the population sizes N_{t} in ABC-SMC?

- trade-off accuracy - computational effort

Population sizes

How to choose the population sizes N_{t} in ABC-SMC?

- trade-off accuracy - computational effort
- idea: adapt population sizes trying to match a specified target accuracy
- expressed in terms of the variation associated with kernel density estimates

Further notes

- there is a lot more to discuss
- including adequate proposal distributions, automatic summary statistics selection, threshold schedules, ABC-MCMC, regression $A B C$, approximate $A B C$, and many variations of the presented algorithms, ...
- also model selection possible in ABC by augmenting the parameter space

Table of Contents

1 Motivation
 - Parameter estimation
 - Complex stochastic models
 2 Approximate Bayesian Computation
 ■ Basics
 - Efficient sampling
 - Challenges

3 Applications
4 Conclusion

pyABC

https://github.com/icb-dcm/pyabc

- implements an ABC-SMC algorithm
- HPC scalable using dynamic scheduling
- analysis, visualization and easy customization
- adaptive local/global transition kernels, distances,

园
scalable acceptance threshold schedules, population sizes, early rejection, ...

pyABC

Three lines get you started

```
# pass model data
abc = pyabc.ABCSMC(model, prior, distance)
# pass observations
abc.new("sqlite:///database.db", observations)
# run it
abc.run(minimum_epsilon=1e-2, max_nr_populations=30)
```


Multi-scale model of tumor growth

Summary statistics

Jagiella et al.; Parallelization and high-performance computing enables automated statistical inference of multi-scale models; Cell Systems; 2017

Multi-scale model of tumor growth

Multi-scale model of tumor growth

Multi-scale model of tumor growth

$A B C$ worked where many other methods had failed.

Multi-scale model of tumor growth

ABC enables automatic multi-experiment data integration.

Jagiella et al.; Parallelization and high-performance computing enables automated statistical inference of multi-scale models; Cell Systems; 2017

Multi-scale model of tumor growth

$A B C$ enables uncertainty-aware predictions.

Jagiella et al.; Parallelization and high-performance computing enables automated statistical inference of multi-scale models; Cell Systems; 2017

Multi-scale model of tumor growth

$A B C$ enables hypothesis testing.

Jagiella et al.; Parallelization and high-performance computing enables automated statistical inference of multi-scale models; Cell Systems; 2017

Multi-scale model of tumor growth

What data do I need?

ABC enables experimental design.
Jagiella et al.; Parallelization and high-performance computing enables automated statistical inference of multi-scale models; Cell Systems; 2017

Analysis of HIV infection dynamics

Jana Fehr, Emmanuel Klinger, Frederik Graw, Jan Hasenauer

Comparing HCV transmission modes

with Elba Raimúndez-Álvarez, Peter Kumberger

Table of Contents

1 Motivation

■ Parameter estimation

- Complex stochastic models

2 Approximate Bayesian Computation

- Basics
- Efficient sampling
- Challenges

3 Applications
4 Conclusion

Conclusion

- parameter estimation when we cannot evaluate the likelihood is challenging
- ABC enables reliable statistical inference with uncertainty information
- samples from an approximation of the true posterior
- broadly applicable
- scalable
- increasingly popular in many research areas
- not a silver bullet - if possible, use (sufficiently good approximations of) likelihoods

Conclusion

- parameter estimation when we cannot evaluate the likelihood is challenging
- ABC enables reliable statistical inference with uncertainty information
- samples from an approximation of the true posterior
- broadly applicable
- scalable
- increasingly popular in many research areas
- not a silver bullet - if possible, use (sufficiently good approximations of) likelihoods

Not everything is a nail.

Acknowledgments

Thanks to:

- Elba Raimúndez Álvarez
- Emmanuel Klinger
- Dennis Rickert
- Jan Hasenauer
- Rest of the ICB-DCM group

Further reading

Q Sisson, Scott A. and Fan, Yanan and Beaumont, Mark Handbook of Approximate Bayesian Computation.
CRC Press, 2018.
Beaumont, Mark A.
Approximate Bayesian Computation in Evolution and Ecology. Annual Review of Ecology, Evolution, and Systematics, 41(1):379-406, 2010.
Blum M. G.
Choosing the Summary Statistics and the Acceptance Rate in Approximate Bayesian Computation. Proceedings of COMPSTAT, Physica, 2010.

ABC-MCMC

Combine with a Markov-Chain Monte-Carlo Scheme
initialize some θ_{0} and simulate $y_{0} \sim \pi\left(y \mid \theta_{0}\right)$ until enough acceptances

1. sample $\theta^{*} \sim g\left(\theta \mid \theta_{n-1}\right)$
2. simulate $y^{*} \sim \pi\left(y \mid \theta^{*}\right)$
3. calculate $\alpha=\min \left[1, \frac{\pi\left(\theta^{*}\right) g\left(\theta^{*} \mid \theta_{n-1}\right) I\left(\left\{d\left(s\left(y^{*}\right), s\left(y_{o b s}\right)\right) \leq \varepsilon\right\}\right)}{\pi\left(\theta_{n-1}\right) g\left(\theta_{n-1} \mid \theta^{*}\right) I\left(\left\{d\left(s\left(y_{n-1}\right), s\left(y_{o b s}\right)\right) \leq \varepsilon\right\}\right)}\right]$
4. accept with probability α and update $\theta_{n}=\theta^{*}, y_{n}=y^{*}$

Example: Gene expression

Example: Gene expression

only protein counts

mRNA and protein counts

Model construction using Morpheus

https://morpheus.gitlab.io

Staruss et al.; Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology; Bioinformatics; 2014

