Schmiester, L.$^∗$, Schälte, Y.$^∗$, Fröhlich,
F.,
Hasenauer, J. and Weindl, D. (2019).
Efficient parameterization of large-scale dynamic models based on relative measurements.
Bioinformatics, 36(2), pp.594-602.
Efficient exact ABC with noise
Schälte, Y. and Hasenauer, J. (2020).
Efficient exact inference for dynamical systems with noisy measurements using sequential
approximate Bayesian computation.
Bioinformatics, 36(Supplement 1), pp.i551-i559.
Robust and efficient ABC via inverse ML models
Schälte, Y., Alamoudi, E. and Hasenauer, J.
(2021).
Robust adaptive distance functions for approximate Bayesian inference on
outlier-corrupted data.
bioRxiv.
Schälte, Y. and Hasenauer, J. (2022).
Informative and adaptive distances and summary statistics in approximate Bayesian
computation.
bioRxiv.
Schälte, Y., Stapor, P. and Hasenauer, J. (2018).
Evaluation of derivative-free optimizers for parameter estimation in systems biology.
IFAC-PapersOnLine, 51(19), pp.98-101.
Schmiester, L.$^∗$, Schälte, Y.$^∗$, et al. (2021).
PEtab — Interoperable specification of parameter estimation problems in systems biology. PLoS
computational biology, 17(1), p.e1008646.
Städter, P.$^∗$, Schälte, Y.$^∗$, Schmiester, L.$^∗$,
Hasenauer, J. and Stapor, P. (2021).
Benchmarking of numerical integration methods for ODE models of biological systems. Scientific
reports, 11(1), pp.1-11.
Fröhlich, F., Weindl, D., Schälte, Y., Pathirana, D.,
Paszkowski, Ł., Lines, G.T., Stapor,
P. and Hasenauer, J. (2021).
AMICI: High-Performance Sensitivity Analysis for Large Ordinary Differential Equation Models.
Bioinformatics, p.btab227.
Adjoint-hierarchical optimization for large-scale ODE models
ODE model
Model: $\dot x = f(x, \theta)$, $x(t_0,\theta) = x_0(\theta)$
Observables: $y = h(x, \theta)$, noise model e.g.: $\bar y = y +
\mathcal{N}(0,\sigma^2)$
forward: differentiate $\dot x = f$ to calculate $\tfrac{dx}{d\psi}$ $\rightsquigarrow$
$O(n_\psi \cdot n_x)$
adjoint: introduce an adjoint state $\dot p = - \tfrac{\partial f}{\partial
x}^Tp$ to avoid $\tfrac{dx}{d\psi}$
altogether $\rightsquigarrow$ $O(2\cdot n_x)$
Can we use adjoints with hierarchical optimization?
actually, we calculate
$\nabla_\psi J(\psi,\hat\eta(\psi)) = \frac{\partial J}{\partial\psi} + \frac{\partial
J}{\partial\eta}\frac{d\hat\eta}{d\psi} = \frac{\partial J}{\partial\psi}$,
as $\frac{\partial J}{\partial\eta} = 0$
thus: can treat $\eta$ as constant in gradient calculation, especially enabling
adjoints
easy to integrate in existing simulation tools
Application
pan-cancer signaling pathway model
$\approx 1400$ species, $\approx 4000$ parameters
observable parameters: up to $\#s=96$, $\#b = 48$, $\#\sigma = 49$
from: Schmiester$^*$, Schälte$^*$ et al., Bioinformatics 2020
adjoint-hierarchical approach facilitates optimization for large-scale
models with
relative data
Efficient exact ABC with noise
ABC
likelihood-free approximate Bayesian computation
conflicting goals:
reduce approximation error $\varepsilon$
keep high acceptance rates
ABC-SMC
combine with a sequential Monte-Carlo scheme
similar to Toni et al., JRS 2009
The problem: (biological) data are noisy
What happens when ignoring noise in ABC?
Assume: Model $y\sim \pi(y|\theta)$ does not
account for noise.
But: Measurements are noisy, $\bar y_\text{obs} \sim \pi(\bar
y|y,\theta)$.
How to account for noise?
“ABC gives exact inference for the wrong model”
Richard Wilkinson, Stat. App. Gen. Mol. Bio. 2013
noise model permits exact likelihood-free inference
applicable to any stochastic model and noise model
parameterized noise model
Problem: Existing methods do not scale in practice
Can we make it more efficient?
How to propose parameters?
$\rightsquigarrow$ integrate in SMC via tempering, $\pi(\bar
y_\text{obs}|y,\theta)^{\color{red}{1/T_t}}$.
How to choose the normalization $c$?
$\rightsquigarrow$ based on previous samples, and avoid decapitation via
reweighting
$\tilde w :=
\color{red}{\frac{\left(\frac{\pi(\bar
y_\text{obs}|y,\theta)}{c_t}\right)^{1/T_t}}{\min\left[\frac{\pi(\bar
y_\text{obs}|y,\theta)}{c_t},1\right]^{1/T_t}}}\cdot\frac{\pi(\theta)}{g_t(\theta)}$
How to choose the temperatures $T_t$, $t=1,\ldots,n_t$?
$\rightsquigarrow$ predict the acceptance rate
$\gamma = \int\left(\int\min\left[\left(\frac{\pi(\bar y_\text{obs}
|y,\theta)}{c_{t}}\right)^{1/T},1\right]\pi(y|\theta)\mathop{dy}\right)g_{t}(\theta)\mathop{d\theta}$
(esp. allows choosing $T_1$)
Evaluation
Applicable to various model and noise model types
orders of magnitude speed-up
scales to challenging application problems
Robust and efficient ABC via inverse machine learning models
The problem:
Fitting heterogeneous data
How to account for data informativeness?
construct low-dimensional summary statistics (see Fearnhead &
Prangle, JRSS 2012)
or: define sensitivity weights via the sensitivity matrix
$S = \nabla_{\bar y} s(\bar y_\text{obs})$,
$q_{i_y} = \sum_{i_\theta=1}^{n_\theta} \frac{\left|S_{i_yi_\theta}\right|}{
\sum_{j_y=1}^{n_y}\left|S_{j_yi_\theta}\right|}$
combine with scale normalization and outlier correction via
adaptive weighting in an SMC framework
learn functions of parameters $\lambda(\theta)$ to capture higher-order
moments
Evaluation: Simple test model
only combination of scale normalization, informativeness
assessment, and regression target augmentation permits accurate inference
sensitivity weights give further insights
Evaluation: Agent-based tumor spheroid model
can via sensitivity weighting in complex application simultaneously account for
informativeness and outliers
Summary
Summary
exploited the problem structure to facilitate inference for large models with
relative data
handled noise accurately and efficiently
combined modeling and machine learning to focus on informative data by learning
underlying relationships
substantially improved inference capabilities, overcome limitations, facilitate new
applications
Contributions
Efficient and accurate large-scale ODE inference
Schmiester, L.$^∗$, Schälte, Y.$^∗$, Fröhlich,
F.,
Hasenauer, J. and Weindl, D. (2019).
Efficient parameterization of large-scale dynamic models based on relative measurements.
Bioinformatics, 36(2), pp.594-602.
Efficient exact ABC with noise
Schälte, Y. and Hasenauer, J. (2020).
Efficient exact inference for dynamical systems with noisy measurements using sequential
approximate Bayesian computation.
Bioinformatics, 36(Supplement 1), pp.i551-i559.
Robust and efficient ABC via inverse ML models
Schälte, Y., Alamoudi, E. and Hasenauer, J.
(2021).
Robust adaptive distance functions for approximate Bayesian inference on
outlier-corrupted data.
bioRxiv.
Schälte, Y. and Hasenauer, J. (2022).
Informative and adaptive distances and summary statistics in approximate Bayesian
computation.
bioRxiv.
Schälte, Y., Stapor, P. and Hasenauer, J. (2018).
Evaluation of derivative-free optimizers for parameter estimation in systems biology.
IFAC-PapersOnLine, 51(19), pp.98-101.
Schmiester, L.$^∗$, Schälte, Y.$^∗$, et al. (2021).
PEtab — Interoperable specification of parameter estimation problems in systems biology. PLoS
computational biology, 17(1), p.e1008646.
Städter, P.$^∗$, Schälte, Y.$^∗$, Schmiester, L.$^∗$,
Hasenauer, J. and Stapor, P. (2021).
Benchmarking of numerical integration methods for ODE models of biological systems. Scientific
reports, 11(1), pp.1-11.
Fröhlich, F., Weindl, D., Schälte, Y., Pathirana, D.,
Paszkowski, Ł., Lines, G.T., Stapor,
P. and Hasenauer, J. (2021).
AMICI: High-Performance Sensitivity Analysis for Large Ordinary Differential Equation Models.
Bioinformatics, p.btab227.
Further contributions
Schälte, Y., Klinger, E., Alamoudi, E., and Hasenauer, J.
(2022).
pyABC: Efficient and robust easy-to-use approximate Bayesian computation. arXiv preprint
arXiv:2203.13043.
Alamoudi, E., Starruß, J., Bundgaard, N., Müller, R., Reck, F., Graw, F., Brusch, L., Hasenauer,
J. and Schälte, Y. (2022).
Massively parallel likelihood-free parameter inference for biological multi-scale systems. NIC
Symposium Proceedings (in submission)
Olbrich, L.$^∗$, Castelletti, N.$^∗$, Schälte, Y.$^*$,
Garí, M.$^∗$, et al. (2021).
A Serology Strategy for Epidemiological Studies Based on the Comparison of the Performance of
Seven
Different Test Systems-The Representative COVID-19 Cohort Munich. medRxiv.
Olbrich, L.$^*$, Castelletti, N.$^*$, Schälte, Y.$^*$,
Garí, M.$^*$, et al. (2021).
Head-to-head evaluation of seven different seroassays including direct viral neutralisation in a
representative cohort for SARS-CoV-2.
The Journal of general virology, 102(10).
Pritsch, M., ..., Schälte, Y., et al. (2021).
Prevalence and risk factors of infection in the
representative COVID-19 cohort Munich. International journal of environmental research
and public health, 18(7), p.3572.
Radon, K., ..., Schälte, Y., et al. (2021).
From first to second wave: follow-up of the prospective Covid-19 cohort (KoCo19) in
Munich (Germany). medRxiv.
Syga, S., David-Rus, D., Schälte, Y., Hatzikirou, H., and
Deutsch, A. (2021).
Inferring the effect of interventions on COVID-19 transmission networks. Scientific reports,
11(1), 1-11.
Durso-Cain, K., Kumberger, P., Schälte, Y., Fink, T.,
Dahari, H., Hasenauer, J., and Graw, F. (2021).
HCV spread kinetics reveal varying contributions of transmission modes to infection dynamics.
Viruses, 13(7), 1308.
Vanhoefer, J., Marta, R., Pathirana, D., Schälte, Y. and
Hasenauer, J. (2021). yaml2sbml:
Human-readable and-writable specification of ODE models and their conversion to SBML.
Journal of Open Source Software, 6(61), p.3215.
Contento, L., Castelletti, N., Raimúndez, E., Le Gleut, R.,
Schälte, Y., et al. (2021).
Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test
efficiency and infection rates. medRxiv.
Software
Acknowledgments
I want to thank:
Jan Hasenauer
Barbara Kaltenbacher, Elisabeth Ullmann, Michael Stumpf
my colleagues at ICB and Bonn University
my co-authors, co-developers, and collaboration partners