Front page

Contributions

Efficient and accurate large-scale ODE inference
  1. Schmiester, L.$^∗$, Schälte, Y.$^∗$, Fröhlich, F., Hasenauer, J. and Weindl, D. (2019). Efficient parameterization of large-scale dynamic models based on relative measurements. Bioinformatics, 36(2), pp.594-602.

Efficient exact ABC with noise
  1. Schälte, Y. and Hasenauer, J. (2020). Efficient exact inference for dynamical systems with noisy measurements using sequential approximate Bayesian computation. Bioinformatics, 36(Supplement 1), pp.i551-i559.

Robust and efficient ABC via inverse ML models
  1. Schälte, Y., Alamoudi, E. and Hasenauer, J. (2021). Robust adaptive distance functions for approximate Bayesian inference on outlier-corrupted data. bioRxiv.
  2. Schälte, Y. and Hasenauer, J. (2022). Informative and adaptive distances and summary statistics in approximate Bayesian computation. bioRxiv.

  1. Schälte, Y., Stapor, P. and Hasenauer, J. (2018). Evaluation of derivative-free optimizers for parameter estimation in systems biology. IFAC-PapersOnLine, 51(19), pp.98-101.
  2. Schmiester, L.$^∗$, Schälte, Y.$^∗$, et al. (2021). PEtab — Interoperable specification of parameter estimation problems in systems biology. PLoS computational biology, 17(1), p.e1008646.
  3. Städter, P.$^∗$, Schälte, Y.$^∗$, Schmiester, L.$^∗$, Hasenauer, J. and Stapor, P. (2021). Benchmarking of numerical integration methods for ODE models of biological systems. Scientific reports, 11(1), pp.1-11.
  4. Fröhlich, F., Weindl, D., Schälte, Y., Pathirana, D., Paszkowski, Ł., Lines, G.T., Stapor, P. and Hasenauer, J. (2021). AMICI: High-Performance Sensitivity Analysis for Large Ordinary Differential Equation Models. Bioinformatics, p.btab227.

Adjoint-hierarchical optimization for large-scale ODE models

ODE model

  • Model: $\dot x = f(x, \theta)$, $x(t_0,\theta) = x_0(\theta)$
  • Observables: $y = h(x, \theta)$, noise model e.g.: $\bar y = y + \mathcal{N}(0,\sigma^2)$
  • Objective: $J(\theta) := - \log\pi(\bar y_\text{obs}|\theta) \overset{!}{\rightarrow}\min_\theta$




We want large-scale models ...

  • holistic view on complex reaction networks
  • with 1000s of state variables and parameters

  • need scalable methods


... but have relative data

  • $\bar y = s \cdot \tilde y + b + \mathcal{N}(0,\sigma^2)$
    with unscaled observables $\tilde y$ and unknown noise levels $\sigma$
  • gives additional parameters
How to efficiently parameterize large-scale ODE models with relative data?

Hierarchical optimization

  • Very efficient inner problem
  • Simplified outer problem
How to calculate $\nabla_\psi J(\psi,\hat\eta(\psi))$?

How to calculate gradients?

  • $\nabla_\psi J(\psi,\hat\eta(\psi)) \approx \frac{1}{2}\sum_i\left[\frac{1}{\hat\sigma_i^{2}}\color{blue}{\frac{d\hat\sigma^2_i}{d\psi}} - \frac{2(\bar y_{\text{obs},i} - (s_i\tilde y_i + b_i))(\hat s_i\color{red}{\tfrac{d\tilde y_i}{d\psi}} + \color{blue}{\tfrac{d\hat s_i}{d\psi}}\tilde y_i + \color{blue}{\tfrac{d\hat b_i}{d\psi}})}{(\hat\sigma^2_i)^2} - \frac{(\bar y_{\text{obs},i} - (\hat s_i\tilde y_i + \hat b_i))^2\color{blue}{\tfrac{d\hat\sigma_i^2}{d\psi}}}{(\hat\sigma^2_i)^2}\right]$
    with colored terms depending on $\color{red}{\frac{d x}{d\psi}}$ with $\dot x = f(x, \psi)$

ODE gradient calculation methods:
  • forward: differentiate $\dot x = f$ to calculate $\tfrac{dx}{d\psi}$ $\rightsquigarrow$ $O(n_\psi \cdot n_x)$
  • adjoint: introduce an adjoint state $\dot p = - \tfrac{\partial f}{\partial x}^Tp$ to avoid $\tfrac{dx}{d\psi}$ altogether $\rightsquigarrow$ $O(2\cdot n_x)$

  • Can we use adjoints with hierarchical optimization?
    • actually, we calculate $\nabla_\psi J(\psi,\hat\eta(\psi)) = \frac{\partial J}{\partial\psi} + \frac{\partial J}{\partial\eta}\frac{d\hat\eta}{d\psi} = \frac{\partial J}{\partial\psi}$, as $\frac{\partial J}{\partial\eta} = 0$

    • thus: can treat $\eta$ as constant in gradient calculation, especially enabling adjoints
    • easy to integrate in existing simulation tools

    Application

    • pan-cancer signaling pathway model
    • $\approx 1400$ species, $\approx 4000$ parameters
    • observable parameters: up to $\#s=96$, $\#b = 48$, $\#\sigma = 49$
    from: Schmiester$^*$, Schälte$^*$ et al., Bioinformatics 2020
    • adjoint-hierarchical approach facilitates optimization for large-scale models with
    • relative data

    Efficient exact ABC with noise

    ABC

    likelihood-free approximate Bayesian computation

      conflicting goals:
    • reduce approximation error $\varepsilon$
    • keep high acceptance rates

    ABC-SMC

    combine with a sequential Monte-Carlo scheme
    similar to Toni et al., JRS 2009

    The problem: (biological) data are noisy

    What happens when ignoring noise in ABC?

    Assume: Model $y\sim \pi(y|\theta)$ does not account for noise.

    But: Measurements are noisy, $\bar y_\text{obs} \sim \pi(\bar y|y,\theta)$.


    How to account for noise?

    3-way noise assessment concept
    “ABC gives exact inference for the wrong model”
    Richard Wilkinson, Stat. App. Gen. Mol. Bio. 2013
    • noise model permits exact likelihood-free inference
    • applicable to any stochastic model and noise model
    • parameterized noise model

    Problem: Existing methods do not scale in practice

    Can we make it more efficient?

    • How to propose parameters?
      $\rightsquigarrow$ integrate in SMC via tempering, $\pi(\bar y_\text{obs}|y,\theta)^{\color{red}{1/T_t}}$.


    • How to choose the normalization $c$?
      $\rightsquigarrow$ based on previous samples, and avoid decapitation via reweighting $\tilde w := \color{red}{\frac{\left(\frac{\pi(\bar y_\text{obs}|y,\theta)}{c_t}\right)^{1/T_t}}{\min\left[\frac{\pi(\bar y_\text{obs}|y,\theta)}{c_t},1\right]^{1/T_t}}}\cdot\frac{\pi(\theta)}{g_t(\theta)}$


    • How to choose the temperatures $T_t$, $t=1,\ldots,n_t$?
      $\rightsquigarrow$ predict the acceptance rate $\gamma = \int\left(\int\min\left[\left(\frac{\pi(\bar y_\text{obs} |y,\theta)}{c_{t}}\right)^{1/T},1\right]\pi(y|\theta)\mathop{dy}\right)g_{t}(\theta)\mathop{d\theta}$
      (esp. allows choosing $T_1$)

    Evaluation

    • Applicable to various model and noise model types
    • orders of magnitude speed-up
    • scales to challenging application problems

    Robust and efficient ABC via inverse machine learning models

    The problem:

    Fitting heterogeneous data

    How to account for data informativeness?


    • construct low-dimensional summary statistics (see Fearnhead & Prangle, JRSS 2012)

    • or: define sensitivity weights via the sensitivity matrix $S = \nabla_{\bar y} s(\bar y_\text{obs})$, $q_{i_y} = \sum_{i_\theta=1}^{n_\theta} \frac{\left|S_{i_yi_\theta}\right|}{ \sum_{j_y=1}^{n_y}\left|S_{j_yi_\theta}\right|}$
    • combine with scale normalization and outlier correction via adaptive weighting in an SMC framework
    • learn functions of parameters $\lambda(\theta)$ to capture higher-order moments

    Evaluation: Simple test model

    • only combination of scale normalization, informativeness assessment, and regression target augmentation permits accurate inference
    • sensitivity weights give further insights

    Evaluation: Agent-based tumor spheroid model

    • can via sensitivity weighting in complex application simultaneously account for informativeness and outliers

    Summary

    Summary


    • exploited the problem structure to facilitate inference for large models with relative data
    • handled noise accurately and efficiently
    • combined modeling and machine learning to focus on informative data by learning underlying relationships

    • substantially improved inference capabilities, overcome limitations, facilitate new applications

    Contributions

    Efficient and accurate large-scale ODE inference
    1. Schmiester, L.$^∗$, Schälte, Y.$^∗$, Fröhlich, F., Hasenauer, J. and Weindl, D. (2019). Efficient parameterization of large-scale dynamic models based on relative measurements. Bioinformatics, 36(2), pp.594-602.

    Efficient exact ABC with noise
    1. Schälte, Y. and Hasenauer, J. (2020). Efficient exact inference for dynamical systems with noisy measurements using sequential approximate Bayesian computation. Bioinformatics, 36(Supplement 1), pp.i551-i559.

    Robust and efficient ABC via inverse ML models
    1. Schälte, Y., Alamoudi, E. and Hasenauer, J. (2021). Robust adaptive distance functions for approximate Bayesian inference on outlier-corrupted data. bioRxiv.
    2. Schälte, Y. and Hasenauer, J. (2022). Informative and adaptive distances and summary statistics in approximate Bayesian computation. bioRxiv.

    1. Schälte, Y., Stapor, P. and Hasenauer, J. (2018). Evaluation of derivative-free optimizers for parameter estimation in systems biology. IFAC-PapersOnLine, 51(19), pp.98-101.
    2. Schmiester, L.$^∗$, Schälte, Y.$^∗$, et al. (2021). PEtab — Interoperable specification of parameter estimation problems in systems biology. PLoS computational biology, 17(1), p.e1008646.
    3. Städter, P.$^∗$, Schälte, Y.$^∗$, Schmiester, L.$^∗$, Hasenauer, J. and Stapor, P. (2021). Benchmarking of numerical integration methods for ODE models of biological systems. Scientific reports, 11(1), pp.1-11.
    4. Fröhlich, F., Weindl, D., Schälte, Y., Pathirana, D., Paszkowski, Ł., Lines, G.T., Stapor, P. and Hasenauer, J. (2021). AMICI: High-Performance Sensitivity Analysis for Large Ordinary Differential Equation Models. Bioinformatics, p.btab227.

    Further contributions

    1. Schälte, Y., Klinger, E., Alamoudi, E., and Hasenauer, J. (2022). pyABC: Efficient and robust easy-to-use approximate Bayesian computation. arXiv preprint arXiv:2203.13043.
    2. Alamoudi, E., Starruß, J., Bundgaard, N., Müller, R., Reck, F., Graw, F., Brusch, L., Hasenauer, J. and Schälte, Y. (2022). Massively parallel likelihood-free parameter inference for biological multi-scale systems. NIC Symposium Proceedings (in submission)
    3. Olbrich, L.$^∗$, Castelletti, N.$^∗$, Schälte, Y.$^*$, Garí, M.$^∗$, et al. (2021). A Serology Strategy for Epidemiological Studies Based on the Comparison of the Performance of Seven Different Test Systems-The Representative COVID-19 Cohort Munich. medRxiv.
    4. Olbrich, L.$^*$, Castelletti, N.$^*$, Schälte, Y.$^*$, Garí, M.$^*$, et al. (2021). Head-to-head evaluation of seven different seroassays including direct viral neutralisation in a representative cohort for SARS-CoV-2. The Journal of general virology, 102(10).
    5. Pritsch, M., ..., Schälte, Y., et al. (2021). Prevalence and risk factors of infection in the representative COVID-19 cohort Munich. International journal of environmental research and public health, 18(7), p.3572.
    6. Radon, K., ..., Schälte, Y., et al. (2021). From first to second wave: follow-up of the prospective Covid-19 cohort (KoCo19) in Munich (Germany). medRxiv.
    7. Syga, S., David-Rus, D., Schälte, Y., Hatzikirou, H., and Deutsch, A. (2021). Inferring the effect of interventions on COVID-19 transmission networks. Scientific reports, 11(1), 1-11.
    8. Durso-Cain, K., Kumberger, P., Schälte, Y., Fink, T., Dahari, H., Hasenauer, J., and Graw, F. (2021). HCV spread kinetics reveal varying contributions of transmission modes to infection dynamics. Viruses, 13(7), 1308.
    9. Vanhoefer, J., Marta, R., Pathirana, D., Schälte, Y. and Hasenauer, J. (2021). yaml2sbml: Human-readable and-writable specification of ODE models and their conversion to SBML. Journal of Open Source Software, 6(61), p.3215.
    10. Contento, L., Castelletti, N., Raimúndez, E., Le Gleut, R., Schälte, Y., et al. (2021). Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infection rates. medRxiv.

    Software

    Acknowledgments

    I want to thank:
    • Jan Hasenauer
    • Barbara Kaltenbacher, Elisabeth Ullmann, Michael Stumpf
    • my colleagues at ICB and Bonn University
    • my co-authors, co-developers, and collaboration partners
    • the administrative staff
    • everyone I forgot here ... :)
    • you